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An approximate numerical integration11 for the case 
where E=1.12foooL, which is the harmonic localized 
mode energy for this model if //=0.5 ix, yields the result 
that the integral in Eq. (47) is about 5X10~3. For this 
case, then, we find 

r / 2 ~ 0 . 2 W 2 . (48) 

Because of the fact that r is identified with the an-
harmonic interaction of an isolated impurity atom with 
its neighbors, it is difficult to make a numerical estimate 
for it. The usual parameter of anharmonicity, the 
Griineisen constant,12 is measured for interactions be
tween atoms of the host crystal. But if we associate 
these quantities with each other, we find that a reason
able Griineisen constant (of the order of unity) for a 
crystal implies that r for the force between each atom 

11 An analytic approximation can be made in the limit of small 
impurity mass. 

12 See, for example, P. G. Klemens, in Solid State Physics, 
edited by F. Seitz and D. Turnbull (Academic Press, Inc., New 
York, 1958), Vol. 7, p. 1. 

I. INTRODUCTION 

ENERGY bands have been calculated for a 
majority of the elements in the iron transition 

series using the augmented plane-wave (APW) 
method.1,2 While the present results are preliminary in 
nature and not in any sense complete, they may be of 
some interest to experimentalists and theoreticians who 
are concerned with the electronic structure of the 
transition-series elements. The present results represent 
energy bands for three different crystal structures, with 
a variety of lattice constants. Despite the detailed dif
ferences that are imposed by symmetry requirements 
and variations in lattice constants, the results suggest 
some interesting and rather clear-cut trends in the band 
structure of these elements as one proceeds through the 

* This work was supported by the National Science Foundation. 
f Presently employed at Bell Telephone Laboratories, Incorpo

rated, Murray Hill, New Jersey. 
1 J. C. Slater, Phys. Rev. 51, 846 (1937). 
2 J. H. Wood, Phys. Rev. 126, 517 (1962). 

e and its nearest neighbors is of the order of 10~2. There-
I fore, from Eq. (48) we see that the order of magnitude 
t of the ratio of the half-width to energy of the anhar-
s monic localized mode is 10~4. Within the limitation of 

the calculations, this result is not in disagreement with 
v the widths obtained in the references cited above.6 No 
' careful quantitative work will be done here, because we 

do not believe the model we use to be realistic enough to 
i warrant it. The significance of the present work lies 
3 more in the form than in the magnitude of the answers. 
i The real part of F(E) is just Eq. (45) with the inte

gral replaced by a principal value integral. It will be of 
i the same order-of-magnitude as the imaginary part; 
- hence the shift of the localized mode (downward in 
i energy for frequencies close to the phonon cutoff) is 
L comparable to its width. 
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transition series. These calculations lend some support 
to the rigid band model for the transition series. They 
support the hope that systematic studies of the band 
structure of the transition-series elements can provide 
useful qualitative, and perhaps quantitative, informa
tion concerning their electronic structure. 

As in all calculations involving d electrons, the results 
are sensitive to the choice of potentials. The crystal 
potentials used in these calculations were all constructed 
in an analogous manner, and were approximated by a 
superposition of atomic potentials. The method involves 
the use of Hartree-Fock solutions to the corresponding 
atomic problem3 and the free-electron-exchange ap
proximation.4 The details of this method for construct
ing approximate crystal potentials have been described 
earlier,5 though a brief resume is presented in Sec. II of 

3 R. E. Watson, Phys. Rev. 119, 1934 (1960); R. E. Watson 
and A. J. Freeman, Phys. Rev. 123, 521 (1961). 

4 J. C. Slater, Phys. Rev. 81, 385 (1951). 
6 L. F. Mattheiss, Phys. Rev. 133, A1399 (1964). 
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Preliminary energy-band calculations for elements of the iron transition series have been completed 
using the augmented plane-wave method. The results include plots of energy as a function of wave vector 
along a line of symmetry for elements crystallizing in the face-centered cubic (Ar, Co, Ni, Cu), body-
centered cubic (V, Cr, Fe), and hexagonal close packed (Ti, Zn) structures. These results indicate the 
presence of systematic trends in the band structures for the various elements and provide some justification 
for the application of the rigid band model to transition metals and their alloys. 
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this paper, along with other information pertaining to 
this present series of calculations. The energy bands 
along a single line of symmetry in the appropriate 
Brillouin zone are presented in Sec. I l l for Ar, Ti, V, 
Cr, Fe, Co, Ni, Cu, and Zn, while the last section 
contains a brief discussion of these results. 

II. DESCRIPTION OF THE CALCULATIONS 

In these calculations, the crystal potential has been 
approximated by a superposition of atomic potentials. 
The Coulomb and exchange contributions to the crystal 
potential are treated separately. An approximate 
crystal Coulomb potential and charge density in a given 
atomic cell is obtained by expanding the neutral atom 
Coulomb potentials and charge densities of neighboring 
atoms about the origin, using Lowdin's alpha function 
expansion,6 keeping only the 1=0 or spherically sym
metric terms in these expansions. Using the free-
electron-exchange approximation, the exchange po-
tenial is proportional to the cube root of the super
imposed atomic-charge densities. 

The potentials obtained by this method are generally 
rather flat near the boundaries of the atomic cell, at 
least in the case of metals, so they are readily approxi
mated by a "muffin-tin" type potential, as required by 
the APW method. The constant value of the potential 
outside the APW spheres is taken as the average value 
of the potential in this region. This usually results in a 
discontinuity in the potential at the sphere radius 
amounting to a few hundredths of a Rydberg. 

In the construction of approximate crystal potentials 
for transition-series elements, there is frequently some 
ambiguity in choosing the most reasonable atomic con
figuration. This sort of difficulty can only be answered 
satisfactorily by experimental information and/or self-
consistent energy-band calculations. For the present, 
we have been content to study the effect that changing 
the atomic configuration has on the band structure. In 
addition, there are magnetic effects which create addi
tional complications in this series of elements. For sim
plicity, all magnetic effects have been neglected in these 
calculations, and the crystals have been assumed to be 
nonmagnetic in character. 

The lattice constants which have been used in these 
calculations have generally been the room-temperature 
values as tabulated by Pearson.7 The exceptions are 
those for Ar and Zn. The lattice constant for Ar is the 
low-temperature value obtained by Dobbs and Jones.8 

In the case of Zn, Harrison9 has extrapolated the room-
temperature lattice constants to low temperatures since 
the results are expected to be sensitive to the choice of 

6 P. O. Lowdin, Advan. Phys. 5, 1 (1956). 
7 W. B. Pearson, A Handbook of Lattice S pacings and Structures 

of Metals and Alloys (Pergamon Press, Inc., New York, 1958). 
8 E. R. Dobbs and G. O. Jones, in Reports on Progress in Physics, 

edited by A. C. Stickland (The Physical Society, London, 1957), 
Vol. 20, p. 516. 

9 W. A. Harrison, Phys. Rev. 126, 497 (1962). 

TABLE I. In this table, we list the elements of the iron transition 
series, their structures, the lattice constants used in this series of 
calculations (in atomic units), and the assumed atomic 
configurations. 

Element Structure a(au) c(au) Configuration 

Ar 
K 
Ca 
Sc 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Cu 
Zn 

fee 

hep 
bec 
bec 

bec 
fee 
fee 
fee 
hep 

10.0346 

5.5755 
5.7225 
5.4512 

5.4168 
6.6975 
6.6590 
6.8309 
5.0120 

8.8503 

9.1453 

(3S)*(3P)« 

(3d)*(4sy 
(3dy(4sy 
(3d)*(4sy 

(3d)7(4s)1 

(3$8(4<r)i 
(3d)9 (4s)1 

(3dy°(4sy 
(3d)10(4sy 

c/a ratio. For purposes of comparison, his values have 
been used in these calculations. Table I contains a 
summary of the elements considered in these calcula
tions, their structures, the values of the lattice con
stants, and the assumed atomic configurations. 

III. RESULTS 

The principal results of these calculations are pre
sented in Fig. 1. These results represent plots of energy 
as a function of wave vector along lines of symmetry 
from the center to a boundary of the appropriate 
Brillouin zones. For the face-centered cubic structure 
(Ar, Co, Ni, and Cu), the bands are plotted from T 
along the A direction to the point X, using the notation 
of Bouckaert, Smoluchowski, and Wigner.10 In the body-
centered cubic structure (V, Cr, and Fe), the bands are 
plotted from T along the A direction to the point H. 
Finally, in the hexagonal close-packed structure (Ti and 
Zn), they start at T and proceed along the line T in the 
kz=0 plane which terminates at the point K, one of the 
vertices of the hexagon (in the notation of Herring11). 

The energy is in Rydbergs and the wave vectors for 
the different elements are drawn to scale for purposes 
of comparison. The horizontal dashed lines represent 
rough estimates of the Fermi energy for each element. 
For simplicity, some of the more highly excited bands 
have been omitted in some cases, particularly in the 
face-centered cubic structure, or in other situations, 
they have been sketched in by dashed lines. 

In Fig. 2, it is shown what effect varying the atomic 
configuration has on the band structure of a typical 
element, namely vanadium. The bands to the right are 
the ones shown in Fig. 1 for vanadium; the ones to the 
left are those obtained from a potential which results 
from an atomic configuration containing an additional 
4s electron and one less 3d electron. In general, this 
results in a narrowing of the 3d band and a decrease in 

10 L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. 
Rev. 50, 58 (1936). 

11 C. Herring, J. Franklin Tnst. 233, 525 (1942). 
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FIG. 1. Energy bands for Ar, Ti, V, Cr, Fe, Co, Ni, Cu, and Zn as a function of wave vector along a line of symmetry in the appro
priate Brillouin zone. For the face-centered cubic structure, the bands are plotted from r along A to the point X. For the body-centered 
cubic structure, they are plotted from V along A to the point H. Finally, for the hexagonal close-packed structure, they are plotted from 
T along T to the point K. The energies are in Rydbergs and the wave vectors are in atomic units. 

the energy separation between the top of the 3d band 
and the bottom of the AsAp bands. 

IV. DISCUSSION 

In the simplified picture of the energy bands for the 
iron transition-series elements, one finds a narrow 3d 
band in the midst of a rather broad AsAp band. The 
width of the 3d band and especially its position relative 
to the bottom of the AsAp band depend rather critically 
on the potential. Nevertheless, the results of Fig. 1 
exhibit a reasonably smooth variation from element to 
element, especially for those substances having the 

same crystal structure. This seems to lend some support 
to the rigid band model for the transition-series ele
ments, an approximation which has been of considera
ble value in understanding the electronic properties of 
these elements and their alloys. 

There is a gradual narrowing of the 3d band as one 
progresses through the series. This effect was discussed 
by Slater in order to explain the occurrence of ferro-
magnetism in the latter part of the series.12 In going 
from Cu to Zn, the 3d band suddenly drops about 0.5 
Ry below the bottom of the AsAp bands, and its width 

12 J. C. Slater, Rev. Mod. Phys. 25, 199 (1953). 
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decreases to less than 0.1 Ry. As a result, the energy 
bands for zinc are very free-electron-like. For those 
elements where the 3d band falls in the middle of the 
4:sAp bands, the interactions between states having the 
same symmetry causes considerable modification to 
the free-electron bands, though at points of symmetry, 
the effect is sometimes small. The bands for Ti and 
Zn demonstrate this effect nicely. 

The results of Fig. 2 emphasize the uncertainty which 
is inherent in any energy-band calculation for a tran
sition-series element. These uncertainties have been 
pointed out previously in the literature, particularly by 
Callaway.13 These difficulties can only be cleared up 
satisfactorily with the aid of more detailed experimental 
information regarding the band structure of these ele
ments in addition to self-consistent energy-band 
calculations. 

The results presented here are not complete enough 
to permit detailed comparisons to be made with experi
ment or a discussion of the resulting Fermi surfaces. 
However, there are some striking similarities between 
the energy bands shown in Fig. 1 and the results ob
tained by earlier calculations. In particular, there is 
good qualitative agreement between the Cu results 
shown in Fig. 1 and the bands calculated by Segall14 

and also by Burdick.15 Similarly, the results for Fe are 
in good agreement with the published results of Wood.2 

The agreement for Ar with the results of calculations 
by Knox and Bassani16 is good, and has been described 
previously.5 In the case of Cr, it is difficult to compare 
the present results with those of earlier calculations by 
Asdente and Friedel17 since they neglect the inter
actions between the 3d band and the 4?-4/> bands. How
ever, the present results do justify, to some extent, the 
treatment of Cr by Lomer,18 who used the results of 
Wood's iron calculations to discuss the energy bands in 
antiferromagnetic Cr. 

In the case of Zn, the ordering of levels is identical 
with that obtained by Harrison.9 This ordering differs 
from that obtained in earlier calculations for hexagonal 

13 J. Callaway, Phys. Rev. 99, 500 (1955). 
1 4B. Segall, Phys. Rev. 125, 109 (1962). 
15 G. A. Burdick, Phys. Rev. 129, 138 (1963). 
16 R. S. Knox and F. Bassani, Phys. Rev. 124, 652 (1961). 
17 M. Asdente and J. Friedel, Phys. Rev. 124, 384 (1961). 
18 W. M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962). 

VANADIUM 
( 3 d ) 3 ( 4 S ) 2 

H25' 
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FIG. 2. Energy bands for vanadium along the line A obtained 
from two different potentials. The bands to the left resulted from 
an atomic configuration of (3d)3(4s)2 while those to the right in
volved a (3d)4(4s)1 configuration. 

close-packed metals by Herring and Hill for Be19 and 
Falicov for Mg.20 This change in ordering might be due 
to the presence of an occupied 3d band just below the 
AsAp bands. The results for Ti agree qualitatively with 
those obtained by Altmann and Bradley.21 Finally, the 
Ni results are in good agreement with those obtained 
by Hanus.22 
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